Main sponsor

/\

v Engineering Business Performance

From RoR & the Ruby VM
to the JVM

33rd Degree Conference | :(9-2k16Ma;cll\ 2«:’12
rakow, roian

*) @DanaDanger

Dana Contreras

Tweet!

1 min ago via Twitter for iPhone Favorite ©1 Retweet 5 Reply

*) @DanaDanger
Dana Contreras

Tweet!

1 min ago via Twitter for iPhone

Favorite 131 Retweet ©5 Reply

> 2.5E9 “deliveries” a day

Rubv on Ré

Sustainable productivity for web-application development

3 HAS...

huge number of concurrent
connections

lots of I/O
few persistent objects

Gosai Kiji

Phasianus versicolor
also known as Japanese
Pheasant is a bird of the
lowlands. Closely related
to the Common
Pheasant, the cock is
distinguished by dark
green plumage on breast
and mantle. The male
has an iridescent violet
neck, red bare facial skin
and purplish green tail.
The female is smaller
than male, and has a
dull brown plumage
with dark spots.

: ‘ !
| .
S /e - -

Twitter Engineering: Building a Faste

<|» | P + [Dntp://engineering.twitter.com/2011/03 /building-faster-ruby

Twitter
Engineering

FRIDAY, MARCH 4, 2011

Building a Faster Ruby Garbage Collector

Since late 2009, much of www.twitter.com has run on Ruby Enterprise Editi
modified version of the standard MRI 1.8.7 Ruby interpreter. At the time,
the REE team to integrate some third-party patches that allowed us to tune
collector for longdived workloads. We knew this was not a perfect choice, b
a new runtime (even MRI 1.9x) would introduce compatibility problems, and
indicated that altemative runtimes are not necessanly faster for our worklos
Nevertheless, the CPU cost of REE remained too high.

To address this problem, we decided to explore options for optimizing the R
We called this effort Project Kiji, after the Japanese bird.

INEFFICIENT GARBAGE COLLECTION

Our performance measurements revealed that even after our patches, the R
uses a significant fraction of the CPU for running the garbage collector on t
This is largely because MRI's garbage collector uses a single heap:

+ The garbage collector's naive stop-the-world mark-and-sweep process
accesses the entire memory set several times. It first marks all objec
“root-set” level as “in-use” and then reexamines all the objects to relea
memory of those not in use. Additionally, the collector suspends the s
during every sweep, thereby periodically “freezing™ some of the progra
The collection process is not generational. That is, the collector does
move objects between heaps; they all stay at the same address for t
lifetime. The resulting fragmented memory extracts a penalty in boo
cost because it can neither be consolidated nor discarded.

We needed to make the garbage collector more efficient but had limited opti

.=

30 NEEDS...

ability to handle server
workloads

an efficient language

30 NEEDS...

ability to handle server
workloads

an efficient language

3 HRST CHOSE Scala

fast

functional and expressive

statically typed
concurrent
beautiful

30 NEEDS...

ability to handle server
workloads

flexibility in language

30 NEEDS...

ability to handle server
workloads

flexibility in language

30 NEEDS...

ability to handle server
workloads

flexibility in language
a real concurrency model

X0 IS AN EVENT DRIVEN &
REAL-TIME PROBLEM

finagle [fonagol|

verb [trans.] informal
obtain (something) by devious or dishonest

means : Ted attended all the football games
he could finagle tickets for.
EEE o [intrans. | act in a devious or dishonest

manner : they wrangled and finagled over
e the fine points.

Finagle, from Twitter

http:/ /twitter.github.com/finagle/

Finagle Quick Start Architecture Java pattems Scala examples

m Old

Finagle, from Twitter

Finagle is a network stack for the JVM that you can use to build asynchronous Remote Procedure Call (RPC)
clients and servers in Java, Scala, or any JVM-hosted language. Finagle provides a rich set of protocol-
independent tools.

Finagle is written in Scala on top of Netty.

abstract class Service[-Req, +Rep]
extends (Reg => Future[Rep]) {

[**

* This is the method to override/implement
* to create your own Service.

*/
def apply(request: Req): Future[Rep]

val response = service(request)

¥*- *scratch* All (1,0) (Scala)----12:16AM 1.56

service(request).onSuccess { response =>
// compute result from response

println(“got response! *“ + response)

-~ **_. *gcratch* All (1,0) (Scala)----12:16AM 1.56

3% HAS A HOME TIMELINE

figure out which tweets to show you
get those tweets

get the users that authored those
tweets

timelineService(userId).andThen { tweetIds =>

tweetService(tweetIds).andThen { tweets =>
val userIds = getUserlIds(tweets)

userService(userIds).onSuccess { users =>

// use users + tweets to produce JSON

¥*- *scratch* All (1,0) (Scala)----12:16AM 1.56

30 S FINAGLE = SUBSTRATE

connection management
protocol codecs
transient error handling
distributed tracing
service discovery
observability

ServerBuilder ()
.name(“ServiceName”)
.reportTo(statsReceiver)
.tracer (traceReceliver)

.codec (Http())
.maxConcurrentRequests(1000)
.requestTimeout(500.milliseconds)
.build(Service[Request, Response])

¥*- *scratch* All (1,0) (Scala)----12:16AM 1.56

ClientBuilder()
.cluster (TimelineServiceCluster)
.hostConnectionCoresize(5)

.hostConnectionLimit (10)
.hostConnectionIdleTime(5.seconds)
.retries(3)

.timeout (500.milliseconds)

¥*- *scratch* All (1,0) (Scala)----12:16AM 1.56

Timeline Tweet Social User Storage /
Storage Storage Graph Storage Retrieval

Timeline
Storage

Tweet
Storage

Social
Graph

User
Storage

Composition

Models /
Biz Objects

Storage /
Retrieval

Twitter App

Timeline
Storage

Tweet Social
Storage Graph

User
Storage

Composition

Models /
Biz Objects

Storage /
Retrieval

Composition

Twitter App

Timeline Tweet Models /
Service Service Biz Objects

P, » ~_ K

Timeline Tweet Social User Storage /
Storage Storage Graph Storage Retrieval

g

Twitter App

g

Timeline Tweet
Service Service

» ~—_ DX

==

Timeline Tweet Social
Storage Storage Graph

User
Storage

Routing

Composition

Models /
Biz Objects

Storage /
Retrieval

HTTP Proxy Routing

Composition

Twitter App

Timeline Tweet Models /
Service Service Biz Objects

P, » ~_ K

Timeline Tweet Social User Storage /
Storage Storage Graph Storage Retrieval

g

HTTP Proxy Routing

Composition

Twitter App

Timeline Tweet Models /
Service Service Biz Objects

P, » ~_ K

Timeline Tweet Social User Storage /
Storage Storage Graph Storage Retrieval

g

HTTP Proxy Routing

Composition

Twitter App

Timeline Tweet Models /
Service Service Biz Objects

P, » ~_ K

Timeline Tweet Social User Storage /
Storage Storage Graph Storage Retrieval

g

SWITCHING T0 -
DOESN’T IMPLY THAT 4
1S A MISTAKE

Twitter £

ctwitter

In the final three minutes of the Super Bowl
tonight, there were an average of 10,000 Tweets

per second.

RS ¢ 1 * L Jolmde]] |
RETWEETS FAVORITES :

743 PM - 5 Feb 12 via Twitter for IPhone - Embed this Twest
4=~ Reply 1t Retweet W Favorite

Reply to @twitter

Twitter =3

dtwitter

Madonna's performance during the Super Bowl's
halftime show saw an average of 8,000 Tweets per

second for five minutes.

Rl 0] o L il]~ I8
RETWEETS FAVORITES d E"m

743 PM - 5 Feb 12 via Twitter for iPhone - Embed this Tweet
4~ Reply T3 Retweet W Favorite

Reply to @twitter

Twitter =3

dtwitter

The highest Tweets per second #SuperBowl peak
came at the end of the game: 12,233. 2nd highest

was during Madonna's performance: 10,245.

s | oeres B EBOBOOE
RETWEETS FAVORITES h— |

8:31 PM - & Feb 12 by RachaelRad via web - Embed this Tweet
4~ Reply 13 Retweet W Favorite

Reply to @twitter

3 ’S HIRING!

=\ FOLLOW ME
@JOINTHEFLOCK K

@RAFF]

